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Topological Quantization of Magnetic Monopoles
and Their Bifurcation Theory

Guohong Yang1 and Yishi Duan2

Received October 16, 1997

Using SU(2) gauge field theory and the f -mapping method, we quantize the
magnetic monopoles at the topological level and determine their quantum numbers
by the Hopf indices and Brouwer degrees of the f -mapping. Then, based on the
implicit function theorem and Taylor expansion, we study the origin and
bifurcation theories of magnetic monopoles at the limit points and bifurcation
points (including first-order and second-order degenerate points), respectively.
We point out that a magnetic monopole can split into at most four particles at
one time.

1. INTRODUCTION

Thispaper continues our recent work on magnetic monopoles and topolog-

ical current theory. In order to maintain the continuity of the whole work and

make the background of this paper clear, in this section we give a brief review of

our early work on the topological quantization of magnetic charges. In Section 2

we introduce the origin of the magnetic monopoles at the limit points. The
bifurcation theories of magnetic monopoles at first-order and second-order

degenerate points are investigated in Sections 3 and 4, respectively.

In previous papers (Duan and Ge, 1976, 1979; Duan, 1984; Duan and

Liu, 1987), we have shown that the electromagnetic field is defined by ’ t

Hooft (1974) in SU(2) gauge field theory as

F m n 5 Fa
m n na 2

1

e
e abc naD m nbD n nc (1)

a, b, c 5 1, 2, 3; m , n 5 0, 1, 2, 3
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where e is the electromagnetic coupling constant, Fa
m n (x) stands for the gauge

field tensor

Fa
m n 5 - m Aa

m 2 - n A
a
m 1 e e abc Ab

m Ac
n (2)

and D m na(x) is the covariant derivative of na(x)

D m na 5 - m na 1 e e abcA
b
m nc (3)

in which Aa
m (x) is the SU(2) gauge potential and na(x) a unit vector field

in isospace

na(x)na(x) 5 1 (4)

which can, in general, be further expressed by

na(x) 5
f a(x)

i f (x) i
, i f (x) i 5 ! f a(x) f a(x) (5)

Here the fundamental field f a(x) in ’ t Hooft’ s theory is identified with the

three-dimensional Higgs field (’ t Hooft, 1976a,b).
The magnetic charge current j m

m is determined by the first pair of Max-

well equations

- n F m n 5 2 4 p j m
m, F m n 5

1

2
e m n l r F l r (6)

and it can be found that

j m
m 5

1

4 p
1

2

1

e
e m n l r e abc - n n

a - l n
b - r nc (7)

which is identically conserved, i.e.,

- m j m
m 5 0 (8)

Using the so-called f -mapping method (e.g., Duan et al., 1994) and (5), we

obtain the d -function-like current

j m
m 5

1

e
d (

-
f )J m 1 fx 2 (9)

where the Jacobian determinants J m ( f /x) are defined by

e abcJ m 1 fx 2 5 e m n l r - n f a - l f b - r f c (10)

in which the component J0( f /x) is just the usual 3-dimensional Jacobian

determinant of
-

f (x) with respect to
-

x 5 (x1, x2, x3),
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J0 1 fx 2 5 J 1 fx 2 5
- ( f 1, f 2, f 3)

- (x1, x2, x3)
(11)

From (9), it is obvious that j m
m Þ 0 only when

-
f (x) 5 0.

Suppose that the fundamental field f a(x) possesses l isolated zeros.

According to the implicit function theorem (Goursat, 1904), when the Jacob-

ian determinant is given as

J 1 fx 2 Þ 0 (12)

the zeros of f a(x) can be expressed as the functions of the time like variable

x0 5 t,

-
x 5 -

z i (t), x0 5 z o
i (t) 5 t, i 5 1, . . . , l (13)

with the generalized velocities

dz m
i

dt
5

J m ( f /x)

J ( f /x) Z zi(t), dz0
i

dt
5 1 (14)

On the other hand, as we proved in Duan et al. (1997), the d -function
d (

-
f ) can be expanded by these zeros as

d (
-

f ) 5 o
i 5 1

l b i

) J ( f /x)zi(t) )
d (

-
x 2 -

z i (t)) (15)

where the positive integer b i is called the Hopf index of the f -mapping at

zi (t) (e.g., Duan and Meng, 1993) and it means that, when the point
-

x covers

the neighborhood of
-
z i (t) once, the function

-
f (x) covers the corresponding

region b i times, which is a topological number of first Chern class and relates

to the generalized winding number of the f -mapping (see also Duan et al.,
1997). Then, substituting (14) and (15) into (9), we get the dynamic form

of the magnetic charge current j mm,

j m
m 5

1

e o
i 5 1

l

b i h i d (
-

x 2 -
z i (t))

dz m
t

dt
(16)

and the topological quantization of the magnetic monopole desntiy r m

r m 5 j 0
m 5

1

e o
i 5 1

l

b i h i d (
-

x 2 -
z i (t)) (17)
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where

h i 5 signJ 1 fx 2 Z zi(t)

5 6 1 (18)

is called the Brouwer degree of the f -mapping at zi (t) (Duan and Meng, 1993).

From the above discussions, we see that (i) the zeros of the Higgs field
-

f (x) are just the sources of the magnetic monopoles, and the motions of the

magnetic monopoles are the same as the equations of
-

f ’ s zeros, (ii) the

magnetic monopoles are topologically quantized in the unit of the basic

magnetic charge g0 5 1/e and the topological quantum numbers are deter-
mined by the Hopf indices b i and Brouwer degrees h i of the f -mapping at

its zeros, and (iii) the Brouwer degree h i 5 1 1 corresponds to the magnetic

monopole, while h i 5 2 1 corresponds to the anti-magetic monopole.

2. THE ORIGIN OF MAGNETIC MONOPOLES

In the previous section, we achieved the topological quantization of

magnetic monopoles and obtained the dynamic form of magnetic charge

current under the condition (12), which guarantees that all of the zeros of

the Higgs field are regular points of the f -mapping. However, when the

kernel of the f -mapping contains some branch points at which (12) fails,

the above results change. Now, let us explore what happens to the magnetic
monopoles at the branch point x* 5 (t*,

-
x *) determined by

5
f 1(t, x1, x2, x3) 5 0

f 2(t, x1, x2, x3) 5 0

f 3(t, x1, x2, x3) 5 0

f 4(t, x1, x2, x3) 5 J( f /x) 5 0

(19)

In f -mapping theory, these are usually two kinds of branch points, the limit

points and bifurcation points (Kubic
Æ
ek and Marek, 1983), satisfying

Ji 1 fx 2 Z x*

Þ 0, i 5 1, 2, 3 (20)

and

Ji 1 fx 2 Z x*

5 0, i 5 1, 2, 3 (21)

respectively, where the Jacobian determinants Ji( f /x) have been defined gen-

erally in (10). Here, we consider the case (20). The other case (21) is compli-
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cated and will be treated in Sections 3 and 4. For simplicity and without lose

of generality, we chose i 5 1.

It is well known that the usual implicit function theorem is of no use
when the Jacobian determinant J ( f /x) 5 0. So we use the Jacobian determi-

nant J1( f /x) instead of J ( f /x) to search for the solution of the equation
-

f (x) 5 0. This means we will replace the timelike variable x0 5 t by x1. To

see this point clearly, we rewrite the first three equations of (19) as
-

f (x1, t, x2, x3) 5 0 (22)

Considering the condition (20) and making use of the implicit function

theorem, we can express the solution of (22) in the neighborhood of the limit

point x* 5 (t*,
-

x*) as

t 5 t (x1), x2 5 x2 (x1), x3 5 x3(x1) (23)

with t* 5 t (x1*). In order to show the behavior of magnetic monopoles at

the limit point, let us investigate the Taylor expansion of (23) in the neighbor-

hood of x* 5 (t*,
-

x *),

t 5 t* 1
dt

dx1 Z x*

(x1 2 x1*) 1
1

2

d2t

(dx1)2 Z x*

(x1 2 x1*)2 (24)

From (14), (20), and the last equation of (19), one has

dx1

dt
5

J1( f /x)

J ( f /x) Z x*

5 ` (25)

that is,

dt

dx1 Z x*

5 0 (26)

Then the expansion (24) is further represented by

t 2 t* 5
1

2

d2t

(dx1)2 Z x*

(x1 2 x1*)2 (27)

which is a parabola in the x1 versus t plane. From (27) we can obtain two

solutions, x1
1(t) and x1

2(t), which give the branch solutions of magnetic mono-

poles at the limit point. If d2t /(dx1)2 Z x* . 0, we have the branch solutions for
t . t*. If d2t /(dx1)2 Z x* , 0, we have the branch solutions for t , t*. The

former case is related to the origin of magnetic monopoles at the limit point.

Since the magnetic charge current is identically conserved, the topological

quantum numbers of these two generated magnetic monopoles must be oppo-

site, i.e.,
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b 1 h 1 5 2 b 2 h 2 (28)

or

b 1 5 b 2, h 1 5 2 h 2 (29)

which is important in the early universe because of spontaneous symmetry
breaking.

3. THE BIFURCATION OF MAGNETIC MONOPOLES

Now let us consider the other case (21). In the present condition, we

have the restrictions

J 1 fx 2 Z x*

5 0, Ji 1 fx 2 Z x*

5 0, i 5 1, 2, 3 (30)

i.e., the rank of the Jacobian matrix [ - f / - x] is given by

rank F - f
- x G Z x*

, 3 (31)

The two restrictive conditions in (30) imply the important fact that the function

relationship between t and
-
x is not unique in the neighborhood of the bifurca-

tion point x*. In our dynamic form of magnetic charge current, this fact can

be seen easily from equation (14),

dxi

dt
5

Ji( f /x)

J ( f /x) Z x*

, i 5 1, 2, 3 (32)

which under the condition (30) directly shows the indefiniteness of the direc-

tion of the integral curve of (32) at x*. This is why the very point x* 5 (t*,
-

x *) is called the bifurcation point of magnetic charge current.

Since the rank of the Jacobian matrix [ - f / - x] is less than 3, we suppose

rank F - f
- x G Z x*

5 3 2 1 5 2 (33)

and let

J1 1 fx 2 Z x*

5 Z - f 1/ - x2, - f 1/ - x3

- f 2/ - x2, - f 2/ - x3 Z x*

Þ 0 (34)

which means x* is a first-order degenerate point of the f -mapping. (The

case that x* is a second-order degenerate point will be detailed in the next
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section.) From f 1(x) 5 0 and f 2(x) 5 0, the implicit function theorem says

that there exists one and only one system of function relationships

x 2 5 x 2(t, x 1), x 3 5 x 3(t, x 1) (35)

Substituting (35) into f 1 and f 2, we get

f b(t, x 1, x 2(t, x 1), x 3(t, x 1)) [ 0, b 5 1, 2 (36)

which give

o
j 5 2

3

f b
j x

j
0 5 2 f b

0, o
j 5 2

3

f b
j x

j
1 5 2 f b

1 (37)

o
j 5 2

3

f b
j x

j
00 5 2 o

j 5 2

3

[2 f b
j0 x

j
0 1 o

k 5 2

3

( f b
jkx

k
0)x

j
0] 2 f b

00 (38)

o
j 5 2

3

f b
j x

j
01 5 2 o

j 5 2

3

[ f b
j0x

j
1 1 f b

j1x
j
0 1 o

k 5 2

3

( f b
jkx

k
0)x

j
1] 2 f b

01 (39)

o
j 5 2

3

f b
j x

j
11 5 2 o

j 5 2

3

[2 f b
j1x

j
1 1 o

k 5 2

3

( f b
jkx

k
1)x

j
1] 2 f b

11 (40)

where b 5 1, 2; j,k 5 2, 3; and

x
j
0 5

- x
j

- t
, x

j
1 5

- x
j

- x1 , x
j
00 5

- 2x
j

- t2
, x

j
01 5

- 2x
j

- t - x1 , x
j
11 5

- 2x
j

( - x1)2 (41)

f b
0 5

- f b

- t
, f b

1 5
- f b

- x1 , f b
j 5

- f b

- x j , f b
00 5

- 2 f b

- t2
, f b

01 5
- 2 f b

- t - x1 (42)

f b
11 5

- 2 f b

( - x1)2 , f b
j0 5

- 2 f b

- t - x j , f b
j1 5

- 2 f b

- x1 - x j , f b
jk 5

- 2 f b

- x j - x k (43)

From these expressions we can calculate the values of the first- and second-

order partial derivatives of (35) with respect to t and x1 at the bifurcation

point x*.

With the aim of finding the different directions of all branch curves at

the bifurcation point, as before, let us study the Taylor expansion of

F (t, x1) 5 f 3(t, x1, x2(t, x1), x3(t, x1)) (44)
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in the neighborhood of x*, which, according to equations (19), must vanish

at the bifurcation point, i.e.,

F(t*, x1*) 5 0 (45)

From (44), the first-order partial derivatives of F(t, x1) with respect to (t, x1t

and (t, x1x1 by

- F

- t
5

- f 3

- t
1 o

j 5 2

3 - f 3

- x
j x

j
0,

- F

- x1 5
- f 3

- x1 1 o
j 5 2

3 - f 3

- x j x j
1 (46)

On the other hand, making use of (34), (37), (46), and Cramer’ s rule, it

is not difficult to prove that the two restrictive conditions in (30) can be

rewritten as

J 1 fx 2 Z x*

5 1 - F

- x1 J1 1 fx 2 2 Z x*

5 0 (47)

J1 1 fx 2 Z x*

5 1 - F

- t
J1 1 fx 2 2 Z x*

5 0 (48)

which lead to

- F

- t Z x*

5 0,
- F

- x1 Z x*

5 0 (49)

by considering (34). The second-order partial derivatives of the function F (t,
x1) are easily found to be

- 2F

- t2 5 f 3
00 1 o

j 5 2

3

[2 f 3
j0x

j
0 1 f 3

j x
j
00 1 o

k 5 2

3

( f 3
jkx

k
0)x

j
0] (50)

- 2F

- t - x1 5 f 3
11 1 o

j 5 2

3

[ f 3
j0 x

j
1 1 f 3

j1x
j
0 1 f 3

j x
j
01 1 o

k 5 2

3

( f 3
jk x

k
0)x

j
1] (51)

- 2F

( - x1)2 5 f 3
11 1 o

j 5 2

3

[2 f 3
j1 x

j
1 1 f 3

j x
j
11 1 o

k 5 2

3

( f 3
jk x

k
1)x

j
1] (52)

which at x* 5 (t*,
-

x *) are denoted by

A 5
- 2F

- t2 Z x*

, B 5
- 2F

- t - x1 Z x*

, C 5
- 2F

( - x1)2 Z x*

(53)
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where j, k 5 2, 3 and

f 3
j 5

- f 3

- x
j , f 3

00 5
- 2 f 3

- t2
, f 3

01 5
- 2 f 3

- t - x1 , f 3
11 5

- 2 f 3

( - x1)2

(54)

f 3
j0 5

- 2 f 3

- t - x
j , f 3

j1 5
- 2 f 3

- x1 - x
j , f 3

jk 5
- 2 f 3

- x
j - xk (55)

So, from (45), (49), and (53), we obtain the Taylor expansion of F (t, x1),

F (t, x1) 5
1

2
A (t 2 t*)2 1 B (t 2 t*)(x1 2 x1*) 1

1

2
C (x1 2 x1*)2 (56)

which by (44) is the behavior of f 3(x) in the neighborhood of the bifurcation

point x*. Because of the third equation of (19) and letting F (t, x1) 5 0, we have

A (t 2 t*)2 1 2B (t 2 t*) (x1 2 x1*) 1 C (x1 2 x1*)2 5 0 (57)

which is followed by

A 1 dt

dx1 2
2

1 2B
dt

dx1 1 C 5 0 (58)

or

C 1 dx1

dt 2
2

1 2B
dx1

dt
1 A 5 0 (59)

The different directions of the branch curves at the bifurcation point are

determined by (58) or (59). The remaining component can be deduced by

dx j

dt
5 x

j
0 1 x

j
1

dx1

dt
, j 5 2, 3 (60)

As before, since the topological charge current of magnetic monopoles is

identically conserved, the sum of the topological quantum numbers of these

two split magnetic monopoles must be equal to that of the original monopole

at the bifurcation point, i.e.,

b 1 h 1 1 b 2 h 2 5 b h (61)

We conclude that in our f -mapping theory of magnetic charge current,

there exists the crucial case of the branching process; when an original

magnetic monopole moves through the bifurcation point, it may split into

two magnetic monopoles moving along different branch curves.
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4. THE BIFURCATION AT A SECOND-ORDER DEGENERATE
POINT

In the preceding section we studied the bifurcation of a magnetic mono-

pole at a first-order degenerate point. In this section, we discuss the branching

process of the magnetic charge current at a second-order degenerate point

x* 5 (t*,
-

x*), at which the rank of the Jacobian matrix [ - f / - x] is

rank F - f
- x G Z x*

5 3 2 2 5 1 (62)

Suppose that

- f 1

- x3 Z x*

Þ 0 (63)

With the same reasoning as in obtaining (35), from f 1(x) 5 0 we have the
function relationship

x3 5 x3(t, x1, x2) (64)

in the neighborhood of x*. In order to determine the values of the first- and

second-order partial derivatives of x3 with respect to t, x1, and x2, one can

derive easily a system of equations similar to (36)±(43). Substituting the

relationship (64) into f 2(x) 5 0 and f 3(x) 5 0, we get

H F1(t, x1, x2) 5 f 2(t, x1, x2, x3(t, x1, x2)) 5 0

F2(t, x1, x2) 5 f 3(t, x1, x2, x3(t, x1, x2)) 5 0
(65)

As we showed in the previous section, for the first-order partial derivatives

of the functions F1(t, x1, x2) and F2(t, x1, x2), we can prove the following six

formulas similar to (49):

- Fc

- t Z x*

5 0,
- Fc

- x1 Z x*

5 f ,
- Fc

- x2 Z x*

5 f , c 5 1, 2 (66)

So the Taylor expansions of F1(t, x1, x2) and F2(t, x1, x2) can be written in
the neighborhood of x* by

Fc(t, x
1, x2) ’ Ac1(t 2 t*)2 1 Ac2(t 2 t*) (x1 2 x1*) 1 Ac3(t 2 t*)(x2 2 x2*)

(67)
1 Ac4(x

1 2 x1*)2 1 Ac5(x
1 2 x1*)(x2 2 x2*) 1 Ac6(x

2 2 x2*)2 5 0
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where c 5 1, 2 and

Ac1 5
1

2

- 2Fc

- t2 Z x*

, Ac2 5
- 2Fc

- t - x1 Z x*

, Ac3 5
- 2Fc

- t - x2 Z x*

(68)

Ac4 5
1

2

- 2Fc

( - x1)2 Z x*

, Ac5 5
- 2Fc

- x1 - x2 Z x*

, Ac6 5
1

2

- 2Fc

( - x2)2 Z x*

(69)

Dividing (67) by (t 2 t*)2 and taking the limit t ® t*, one obtains the two

quadratic equations of dx1/dt and dx2/dt,

Ac1 1 Ac2
dx1

dt
1 Ac3

dx2

dt
1 Ac4 1 dx1

dt 2
2

1 Ac5
dx1

dt

dx2

dt
1 Ac6 1 dx2

dt 2
2

5 0 (70)

and further, eliminating the variable dx1/dt, one has the equation of dx2/dt in

the form of a determinant

)
A14 A15v 1 A12 A16v

2 1 A13v 1 A11 0

0 A14 A15v 1 A12 A16v
2 1 A13v 1 A11

A24 A25v 1 A22 A26v
2 1 A23v 1 A21 0

0 A24 A25v 1 A22 A26v
2 1 A23v 1 A21 ) 5 0 (71)

with the variable v 5 dx2/dt, which is a fourth-order equation of dx2/dt,

a1 1 dx2

dt 2
4

1 a2 1 dx2

dt 2
3

1 a3 1 dx2

dt 2
2

1 a4 1 dx2

dt 2 1 a5 5 0 (72)

Therefore we get different directions of the branch curves at the second-

order degenerate point x*. The largest number of different branch curves is

four, which means an original magnetic monopole with the topological quan-
tum number b h can split into at most four particles at one time with magnetic

charges b l h l (l 5 1, 2, 3, 4) satisfying

b 1 h 1 1 b 2 h 2 1 b 3 h 3 1 b 4 h 4 5 b h (73)

5. CONCLUSIONS

Based on the ’ t Hooft SU(2) gauge field theory, we achieved the topologi-
cal quantization, origin, and bifurcation of magnetic monopoles. The zeros

of the Higgs field are the sources of the magnetic monopoles and they are

quantized at the topological level in units of the basic magnetic charge g0 5
1/e. The topological quantum numbers are determined by the Hopf indices
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b i and Brouwer degrees h i of the f -mapping at its zeros, in which b i is a

topoligcal number of first Chern class and h i 5 1 1 stands for the magnetic

monopole, while h i 5 2 1 stands for the anti-magnetic monopole. It is also
shown that there exists the crucial case of branching in our f -mapping theory

of magnetic charge current. At the limit point of the f -mapping the branching

process corresponds to the origin of magnetic monopoles, and at the bifurca-

tion point the different directions of all branching curves are calculated. The

largest number of different branching curves is four, i.e., an original magnetic

monopole can split into at most four particles at one time. Since the magnetic
charge current is identically conserved, the sum of the magnetic charges of

these generated or split magnetic monopoles must be equal to zero or the

topological quantum number of the original magnetic monopole. This result

is important in the early universe because of spontaneous symmetry breaking.

We see that the branching process of magnetic monopoles is not a gradual

change, but starts at a critical value of the arguments, i.e., it represents a
sudden change.
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